
MUSIC GAME MAP GENERATION: MELODY SABER 

Chenhe Gu

New York University Abu Dhabi

cg3293@nyu.edu

Keyin Wu

New York University Shanghai

kyw259@nyu.edu

Ziying Wang

New York University Shanghai

zw1745@nyu.edu 

ABSTRACT

Melody Saber is an immersive music game inspired
by the popular rhythm game Beat Saber [1]. Different
from Beat Saber which plays out the entire music
piece regardless of the player’s performance, our
Melody Saber allows the user to generate a
customized game map of pop songs and play
different melody clips depending on how they hit the
game block. The user can generate accompaniments
based on deep learning models Chorderator [2] and
Accomontage [3], choose a track to chop into blocks,
and generate the music game map in a Virtual Reality
(VR) environment through Unity. By enabling
players to generate their unique melody track,
Melody Saber creates an innovative music game
experience combined with music game map
generator.

1. OVERVIEW

We build the Melody Saber, an immersive music
game in VR which, unlike traditional music games,
allows the user to experience alternative renditions of
pop songs and perceive real-time modulations to the
music they hear as a result of their actions.
Specifically, we map notes from Deep Learning-
generated melody sequences to blocks which the
player hits along with the music. Moreover, we alter
the perceived music if the hit direction is incorrect.

Via Melody Saber, we intend to complete the circle
of Music Information Retrieval (MIR) and music
synthesis. This is manifested in our input processing
workflow (Fig. 1), where we generate completely
new accompaniment arrangements from the main
melody of famous pop songs and map the results to
playable game objects. We further divide our process
into three sections as follows:

Figure. 1: System Summary

mailto:cg3293@nyu.edu
mailto:kyw259@nyu.edu
mailto:zw1745@nyu.edu

● Accompaniment Generation, which handles
raw melody input and adds to it a complex
accompaniment sequence;

● Melody Processing and Transformation,
which takes the generated song rendition
and creates a corresponding .JSON file
mapping notes from the accompaniment
sequence to appropriate spawn times for
game blocks. Along with the original notes,
3 different modulations of the notes are also
generated corresponding to 3 incorrect hit
directions by the user;

● Unity Rendering and Interaction Logic,
which generates blocks so the user could hit
them according to the melody progression as
it is being played.

●
We elaborate on each of these processes in the
following sections.

2. METHODOLOGY

2.1 Accompaniment Generation

We aim to create music pieces that resemble popular
hits yet are different, making them refreshing for the
player to hear and play with.

We define the input MIDI track as the melody track,
which contains a simple melody or the hook of a
song. We add a generated MIDI track which serves to
enrich and add layers to the main melody. The
beginning of a naïve input track is shown in Fig. 2.

Figure. 2: Piano Roll of the input main melody (from

Levels by Avicii) (GarageBand).

We adopt Chorderator, a rule-based chord generation
tool that leverages dynamic programming techniques
to match melody phrases to chords, which it draws
from a collection of professionally-made chords [2].
We additionally provide the program with the tempo
and key information which we look up in a DAW. It

is also notable that Chorderator requires in its input a
custom division of bars in order to distinguish each
phrase, which we also supply. We observe that
Chorderator achieves the optimal results with
simplistic melodies with fixed phrase lengths. As
illustrated in Fig 3, the resulting chord sequence for
the Fig. 2 input is a series of complex chords.
However, the result is still not sophisticated enough
to be directly used as the accompaniment for the
main melody. We therefore leverage AccoMontage
[3], a deep-learning-based generative tool combining
phrase selection and recombination via CNN as well
as music style transfer using an VAE framework.

Figure. 3: Piano roll of chord progression generated

from Chorderator (GarageBand)

We process the Chorderator output according to the
input restrictions of AccoMontage as follows:

● We adjust the lengths of notes such that all
notes in a chord share the same length.

● AccoMontage specifies a set of differences
in partials between notes in a chord, which
all chords need to satisfy. Additionally, only
chords with 3 or 4 notes are considered. For
each chord generated with more than 4
notes, we iteratively compute all differences
in partials of 4-note and 3-note combinations
and select the optimal one satisfying
AccoMontage requirements. We prioritize 4-
note chords over 3-note ones and chords
with higher pitches over low-pitched chords
in order to best preserve the musical texture
of the Chorderator output.

● When no suitable chords can be found, we
look up the corresponding note from the
main melody and fill in a generic 3-note
major chord based on that note, as it
theoretically harmonizes with the main
melody.

An example of processed output can be seen in Fig 4.

Figure. 4: Piano roll of processed chorderator output

(GarageBand)

Figure. 5: Piano roll of generated accompaniment

sequence (GarageBand)

We therefore are able to obtain a more
sophisticated accompaniment sequence given
the processed output.

2.2 Melody Processing and Transformation

In order to input the generated music into the game
interface, we convert each .MIDI file into
small .WAV clips, along with a corresponding .JSON
file that can be read in Unity. The conversion will
also alter the original music by modulation and
instrument replacement to map different user actions
in future game implementation.

The processing is track-based using pretty_midi
library in Python. Normally the generated music will
have two tracks. The user can decide which track to
be processed by inputting a track number. Based on
the list of notes on the chosen track, we group the
notes depending on their start time interval. Each
group of notes outputs a .WAV file that will be
mapped to each block that the player hits in the game.
Since there should leave some space between every
two blocks, the time interval of groups should have a
minimum, which, for example, was set to one second
in our demo. After we fetch the start time of the first
note in each group, we are able to bond the time
when a game block should be initiated with the .WAV
file that the block carries.

The clip of original music will be attached to the
correct direction of each game block. The synthesized
music clip by Frequency Modulation (FM) and
Amplitude Modulation (AM) will be respectively
attached to the relative left and right direction of the

correct direction. The altered music with an
instrument change will then be attached to the
opposite of the correct direction. We have tested on a
few tracks which shows both the melody track and
the accompaniment track can produce relatively good
results where the music can be recomposed through
the game. In our demo, we chose to process the main
melody track to generate a simpler map and decrease
the difficulty. The information of each group of notes
is stored in a dictionary, which can be passed as
a .JSON file to Unity for game implementation.
The .JSON file gives the timestamp when each game
block should be hit and identifies the four music clips
that each block may play according to different user
actions. The structure of the .JSON file is as follows:

{

 "3.25":[

 {

 "wav_top" : "0_3.25.wav",

 "wav_left" : "0_3.25_left.wav",

 "wav_right" : "0_3.25_right.wav",

 "wav_btm" : "0_3.25_btm.wav"

 }

],

 "4.25":[

 {

 "wav_top" : "0_4.25.wav",

 "wav_left" : "0_4.25_left.wav",

 "wav_right" : "0_4.25_right.wav",

 "wav_btm" : "0_4.25_btm.wav"

 }

],

 ……

}

2.3 User Interactions and Design

We import both the .JSON file with note information
and the folder of the chopped .WAV file into Unity.
We initiate a timer at the beginning of each map and
instantiate the block(s) every time the timer reaches a
timestamp according to the .JSON file. When the
block(s) is being generated, the audio file path for
each side will be written into the four empty audio
sources (each tagged with one of the four directions)
tied to the block(s).

To detect the face the user sliced in, we captured the
instantaneous position of the saber the moment it
touches the block and calculated its position change
within a frame count. The audio file linked to the

corresponding direction will play if the player hits the
block with their saber of the same color.

The unsliced track of the two (accompaniment track
in our demo) is written into the background music
audio source. We get the spectrum data of the
background music track, separate the spectrum into 8
different bandwidths and create audio visualization
that would animate when the track is being played
according to the amplitude of each bandwidth.

Figure 6: Audio visualization in game.

To improve the gaming experience, we built a neon
light environment, sabers, and blocks. If sliced from
the correct direction (corresponding with the arrow
direction), the block will burst into multiple cubes.
We also create a menu scene for track selection.
Through a ray cast from the right-hand saber, the
player can point at one of the three album covers,
press down the selection trigger, and start playing the
corresponding map.

3. EVALUATIONS

We conducted multiple user-testing for Melody
Saber. Most users find the interaction of Melody
Saber extremely entertaining. Compared with the
classical Beat Saber, our players are intrigued by the
diverse styles of melody that can be played by hitting
the blocks from different directions.

Figure 7: Professor Gus Xia trying out MelodySaber.

Other than the positive feedback we received, our
users also claimed that the map is beginner level and
that there are occasional long gaps between two
waves of blocks where they find dull.

In order to enrich the player experience and
complicate the game map, we need to add layers onto
the track that is later split and mapped onto individual
blocks. Our current accompaniment generating
algorithm cannot create an accompaniment beautiful
enough to be layered with the main melody.

In future iterations, we aim to:

● Modify our algorithm and generate a

richer accompaniment consisting of
multiple layers of melodies and
instruments.

● Adopt MIR technique to identify music
that will be mapped on the blocks from the
music that will construct the background
track.

● Optimize block instantiation algorithm to
improve hitting movement experience.

4. REFERENCES

[1] 	 Beat Games, Beat Saber, May 2018.

[2] 	 Yi, B., 2021. [online] Available at: <https://
b i l lyy i . top / r e sea rch /chorde ra to r />
[Accessed 15 December 2021].

[3] Z h a o , J . a n d V i a , G . , 2 0 2 1 .
ACCOMONTAGE: ACCOMPANIMENT
A R R A N G E M E N T V I A P H R A S E
SELECTION AND STYLE TRANSFER.
[online] Arxiv.org. Available at: <https://
arxiv.org/pdf/2108.11213.pdf> [Accessed
15 December 2021].

	MUSIC GAME MAP GENERATION: MELODY SABER
	ABSTRACT
	1. OVERVIEW
	We define the input MIDI track as the melody track, which contains a simple melody or the hook of a song. We add a generated MIDI track which serves to enrich and add layers to the main melody. The beginning of a naïve input track is shown in Fig. 2.
	2.2 Melody Processing and Transformation
	2.3 User Interactions and Design
	3. EVALUATIONS

